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ABSTRACT
Event-driven spiking neural networks (SNNs) have shown great
promise for being strikingly energy-efficient. SNN neurons inte-
grate the spikes, accumulate the membrane potential, and fire
output spike when the potential exceeds a threshold. Existing
SNN accelerators, however, have to carry out such accumulation-
comparison operation in serial. Repetitive spike generation at each
time step not only increases latency as well as overall energy bud-
get, but also incurs memory access overhead of fetching membrane
potentials, both of which lessen the efficiency of SNN accelera-
tors. Meanwhile, inherent highly sparse spikes of SNNs lead to
imbalanced workloads among neurons that hurdle the utilization
of processing elements (PEs).

This paper proposes SATO, a temporal-parallel SNN accelerator
that accumulates the membrane potential for all time steps in paral-
lel. SATO architecture contains a novel binary adder-search tree to
generate the output spike train, which decouples the chronological
dependence in the accumulation-comparison operation. Moreover,
SATO can evenly dispatch the compressed workloads to all PEs
with maximized data locality of input spike trains based on a bucket-
sort-based method. Our evaluations show that SATO outperforms
the previous ANN accelerator 8-bit version of “Eyeriss” by 30.9× in
terms of speedup and 12.3×, in terms of energy-saving. Compared
with the state-of-the-art SNN accelerator “SpinalFlow”, SATO can
also achieve 6.4× performance gain and 4.8× energy reduction,
which is quite impressive for inference.
1 INTRODUCTION
Biologically-inspired spiking neural networks (SNNs) use event-
based models to simulate biological neurons and provide high pre-
diction accuracy with minimal energy consumption [1, 5, 6, 16].
Spiking neurons are the main computing and storage units in SNNs
that collect input spikes and emit output spikes according to the
membrane potential, like their biological counterparts. Series of
spikes, called spike trains, transmit information between neurons
by their firing times and firing frequencies. In SNN implementa-
tions, the time window of a spike train is divided into time steps to
support neuron calculation in a synchronized manner [16].
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The neuron calculation in SNN has the potential to improve
hardware efficiency because inputs are binary spikes [16]. In that
case, weights are only added instead of being multiplied with input
as conducted in deep artificial neural networks (ANNs), exempting
expensive multiply operations in SNNs [6]. Based on this, several
previous works, such as Neurogrid [2], IBM TrueNorth [1], Intel
Loihi [5], NEBULA [18], Xilinx S2N2 [9], etc., have shown effective
deployment of SNN in customized hardware for training and in-
ference. IBM TrueNorth [1] processor is a digital implementation
of SNN, consisting of many tiles that can simultaneously process
the input signal of a single neuron in a single time step. Besides,
to increase the parallelism inside tiles, SpinalFlow [14] utilizes PE
arrays to process multiple neurons in parallel with sparse encoding.
An Eyeriss-based SNN accelerator [3] describes an output station-
ary flow that can minimize the movement of partial-sums and save
a portion of the time for accumulating membrane potential.

In spite of the significant advances, existing SNN accelerators still
suffer from low energy efficiency and long processing latency under
the time-driven mechanism, which updates all neurons at every
time step [6, 16]. The main hurdle is the chronological accumulation
of the membrane potentials in SNN computation, which demands
a serial process of spikes at each time step. In such a procedure,
a problem that we call the chronological dependence happens, i.e.,
SNNs require repetitive spike generation at each time step and
depend on the aggregated potential of the previous time steps,
resulting in higher inference latency and energy consumption [14,
18]. Although recent work has shrunk the inference time steps down
to 16 on small datasets with their accuracy at par with ANNs [7], this
work still requires hundreds of time steps for large-scale datasets
(e.g., ImageNet) [8, 10, 15]. It is essential to design an efficient SNN
accelerator for competitive ANN datasets and tasks.

In addition, recent studies have shown temporal-encoded SNNs [8,
11, 15] (a.k.a., SNN-T) with their inherent higher sparsity and ability
to encode temporal information in inputs can match the accuracy
of an ANN, even on large-scale datasets [4, 16, 20]. However, the ef-
ficiency advantages of temporal-encoded SNNs will not be evident
subject to the chronological dependence.

In this paper, we propose a novel SNN accelerator named SATO
that decouples the chronological dependence during the neuron com-
putation to overcome the bottleneck of computation over multiple
time steps and leverage the full potential of temporal-encoded SNNs.
We first design a temporal-parallel dataflow that simultaneously
accumulates the input of both each neuron and each time step.
After that, the accumulated results of a neuron in all time steps are
fed into a novel search-adder tree module, which can immediately
determine the time steps to fire output spikes. In addition, to bal-
ance the biased workload between processing elements (PEs), we
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propose an effective and efficient bucket-sorting method to dynam-
ically group and dispatch the workloads evenly to PEs. Finally, we
design a novel SNN accelerator architecture leveraging fine-grained
parallelism. Our contributions can be listed as follows:

• We design a novel SATO architecture that can greatly im-
prove the performance of SNN accelerator by synthesizing a
temporal-parallel dataflow and a search-adder tree to deter-
mine the times of output spikes.

• We propose a bucket-sort based dispatcher that balances the
workloads (i.e., the number of non-zero spikes) among PEs
and maximizes the data locality of the input spike train that
can be shared by PE groups.

• Experiments on various SNN-T show that SATO achieves
average 30.9×, 22.1× and 6.4× speedup improvement upon
ANN baseline “Eyeriss” and the state-of-the-art SNN accel-
erators “S2N2” and “SpinalFlow” with smaller area cost. Our
design also remains the best among these designs in terms
of energy efficiency.

2 BACKGROUND AND MOTIVATION
2.1 Spiking Neural Network
Fig. 1 depicts an SNN composed of a post-synaptic neuron, which
is driven by two pre-synaptic neurons. 𝑢𝑖 (𝑡) is the model state
variable (corresponding to the neuron membrane potential). As the
post-synaptic neuron receives spikes from pre-synaptic neurons,
the synaptic weight for that inputs are added to the potential.

For better understanding, we compare the neuron computation
required for the non-spike neuron (in ANNs) and spiking neuron
(in SNNs) with the input. The calculation of the input signal to a
non-spike neuron is as follows:

I =
𝑁∑︁
𝑖=0

𝑤𝑖𝑥𝑖 (1)

where 𝑥𝑖 is the input signal and 𝑤𝑖 is the corresponding weight.
Here, we focus on the Integrate and Firemodel (IF) neuronmodel [16],
the calculation of the input signal to the spiking neuron is as fol-
lows:

V(𝑡 + 1) = V(𝑡) +
∑︁

𝑖∈{𝑖 |𝑋𝑖 (𝑡 )=1}
𝑤𝑖 (2)

where, V(𝑡) is the neuron membrane potential, which represents
the state variable of themodel,𝑋𝑖 (𝑡) is the input spike train from the
𝑖-th pre-synaptic neuron, and𝑤𝑖 is the weight associated with these
inputs. 𝑋𝑖 (𝑡) = 1means that a spike arrives at time step 𝑡 . After the
neuron membrane potential V(𝑡) reach the pre-defined threshold
𝑉𝑡ℎ , it fires the spike at time step 𝑡 and then resets membrane back
to the reset potential 𝑉𝑟𝑒𝑠𝑒𝑡 . After that, subsequent input spikes
will accumulate on the membrane again. Since the input values in
SNN are 1 or 0, the mathematical dot product operation in Eq. 1 is
transformed into the addition operation in Eq. 2. The information
transmitted in the SNN is based on a temporal-encoding [4, 16] -
the neuron activation value is represented by the latency to the first
spike of the corresponding spike train over a given time window.
2.2 SNN Accelerators
Existing SNN accelerators [9, 14, 18] have a similar dataflow: map
the post-synaptic neurons calculations onto PEs in parallel and
integrate spikes along the time steps in serial. Fig. 2(a) illustrates the
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Figure 1: A basic spiking neuron with 2-input. Incoming spikes
through the synapse (weight) impact the membrane potential.

aforementioned dataflow and pseudocode, whereinM represents
the number of pre-synaptic neurons, N refers to the number of post-
synaptic neurons, and T is the number of time steps. The accelerator
processes the spikes as follows: 1 integrate the spikes at time step
𝑡 ; 2 accumulate the integrated spike to the membrane potentials;
3 compare the current membrane potential to the prescribed firing
threshold; 4 fire the output spike at time step 𝑡 and reset the
membrane potential if the potential exceeds the threshed. The inner
Neuron Loop is unrolled and mapped to PEs in parallel. All PEs
execute one round of process 1 ∼ 4 in serial. They continue the
T rounds overall.

In the conventional design, the accumulation of membrane po-
tential depends on the accumulated membrane potential of previous
time steps, making SNNs require sequential computation across
multiple time steps of the spike train. The number of cycles re-
quired to perform an inference is at least the number of time steps.
The latency of the accelerator significantly increases when T is
large. The parallelism of PE is limited by the number of neurons
(i.e., neuron-level parallelism). Conventionally, prior works [14, 16]
such as SpinalFlow [14] exploit the sparsity of the spike train to
speed up the SNN.

2.3 Motivation
Existing SNN accelerators still suffer from low energy efficiency
and long processing latency under the time-driven mechanism: (i)
SNNs iterate over all the neurons for each time step (i.e., neuron
computation) and accumulate membrane potentials of previous
steps at each step, leading to additional memory requirements for
storing intermediate potentials and expensive memory access costs
in the total power budget. (ii) Accumulating spikes over multiple
time steps leads tomore operations, which reduces energy efficiency.
(iii) A larger number of time steps represent the longer network
latency. Thus, we propose a novel redesign of the SNN dataflow
and architecture to decouple the chronological dependence and
parallelize the integration of received spikes at each time step for
boosting SNN efficiency.

3 SATO SCHEME
3.1 Overview
The overview of SATO in Fig. 2(b) is depicted as follow:

In Step A , we map the integration of spikes of all time steps on
PEs without accumulating membrane potential, which expands the
neuron-level parallelism to additional temporal-level parallelism.
This method increases the scalability of the SNN implementations
and allows the computational logic of PE to remain fairly simple but
effective compared to the conventional schemes. We will discuss this
in Section 3.2.
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Figure 2: Comparison of the dataflow in our SATO to it in the state-of-the-art SNN accelerators. (a) Conventional Design and (b) Our Design.
The conventional SNN accelerators, as well as SpinalFlow, perform parallel computation on neurons, while SATO performs parallel computation
on both integration of spikes at each time step and neurons.
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Figure 3: Overview of SATO architecture and SATO PE details.

In Step B , to perform spike train generation in a PE array, we
orderly feed the integration results located at each time step to the
adder tree and combine them with the binary search to determine
the time step that the first fired spike. This can be implemented
by a novel binary adder-search tree module. We will discuss this
in Section 3.4.

Since all PEs process received spikes of each time step in paral-
lel, the performance is bounded by the slowest PE, which requires
workload balance among PEs. We develop a workload dispatch
strategy to achieve workload balance and leverage the locality of
the received spikes. This innovative workload dispatch strategy mini-
mizes the maximal number of received spikes for better PE utilization.
We will discuss this in Section 3.3. The overall SATO architecture
and the detail of PE are shown in Fig. 3(a). The PE in our design is
much simpler than other designs in Fig. 3(b).
3.2 Proposed SATO DataFlow
Membrane Potential Integration of each time step is processed
on PEs in parallel. As depicted in Fig. 2(b), our SATO changes the
dataflow, expanding the parallelism of the system to the temporal
level (i.e., temporal-level parallelism). In this way, we can process
the integration of received spikes at each time step in parallel, fol-
lowed by the spike train generation. Our proposed dataflow can

exploit both temporal-parallelism and neuron-level parallelism, in-
creasing the scalability of the accelerator, and thus can be optimized
for different types of SNNs. Therefore, SATO can reduce the mini-
mum latency according to the hardware condition, which will be
discussed in Section 4.2.

To optimize the performance of the system, the PE array ac-
celeration has been adjusted in the loop nest of the existing SNN
accelerators. We place T in an inner-loop position enabling the re-
ceived spikes at each time step can be integrated by PEs in parallel,
i.e., the PE parallelism is converted from M to T (loop interchange,
the green area in Fig. 2). Therefore, the received spike decoupling
chronological dependence makes the computing logic of PE in our
dataflow fairly simple but effective, which performs the integration
operation of received spikes in parallel.

Spike Train Generation is packaged with the PE array. To
optimize the spike train generation efficiency, membrane potential
accumulation has been peeled and placed in the outer-loop posi-
tion (loop peeling, the gray area in Fig. 2). Once PEs complete the
integration of received spikes of each time step, the results are fed
to a novel binary adder-search tree in Section 3.4 to generate the
spike train. In SNN-T, the spike train only has a single spike, which
can be realized by adopting binary search with the time complexity
𝑂 (log T).

3.3 Bucket-Sort Based Workload Dispatcher
PEs process spikes in parallel, so the performance of PEs is limited
by the slowest PE, which requires balancing workloads among
PEs. To reduce the delay of accessing the input spikes and simplify
the hardware overhead, the allocation of spikes should consider
the locality of non-zero spikes to further optimize the overhead
of input spikes. Therefore, this work designs a workload dispatch
strategy and exploits the inherent sparsity of the spike train and
the data locality to optimize the workload and overhead of the PEs.
As shown in Fig. 4, the three steps of our strategy consist of the
construction of sparse matrix, PE mapping, and dispatch workload
into PE groups.

Step 1: Construct the sparse spike matrix according to the spik-
ing time of pre-synaptic neurons. Each row corresponds to a time
step and displays the fired neuron at the time step. Each column
corresponds to a pre-synaptic neuron and displays the firing state
in each time step.
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Figure 4: The flow of our workload dispatch strategy, which is composed of three steps: the construction of sparse matrix (Step 1), PE mapping
(Step 2), and dispatch workload into PE groups (Step 3).

Step 2: Map the workloads to PEs. PEs in SATO process the
potential accumulation for each time step, which means a PE may
process one or more rows of the sparse matrix generated in Step1.
The workload balance means that the maximum number of spikes
processed by PEs should be minimized. Because each time step
generates inconsistent sparsity, to achieve load balance, we have
to ensure that the number of non-zero spikes in the time step
processed by the PE is almost the same. We define a metric, Δ𝑛𝑛𝑧,
representing the average number of non-zero spikes processed
by each PE, i.e., Δ𝑛𝑛𝑧 = #𝑛𝑛𝑧

#𝑃𝐸 , determines the optimal number
of non-zero spikes processed by each PE. The workload of PEs is
perfectly balanced when each PE processes Δ𝑛𝑛𝑧 spikes. On this
basis, we also need to take the data locality into account in our
designed strategy. When a PE needs to process multiple rows of the
sparse matrix generated in Step 1, our strategy determines the best
choice of workload dispatched by PE according to the following two
principles. First, we ensure that the number of spikes processed by
the PE is close to Δ𝑛𝑛𝑧; Second, each PE processes as many spikes
as possible repeatedly, by which the overhead of its load data is as
small as possible.

Step 3: Dispatch workload into PE groups. To further optimize
the overhead of PEs, we achieve data sharing by dispatching work-
loads into PE groups. The PEs in the same PE group take the same
data by sharing memory. Here, to maximize the data locality of
spikes, it requires PEs to share more input spikes. In other words,
it is desirable to hold PEs with a larger number of overlaps non-
zero spikes 𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝 in the same group. As shown in Fig. 4, each
group contains 3 PEs, i.e., these 3 PEs share the loaded data. PE1,
PE4, and PE5 have the most duplicated non-zero spikes, up to 5
(𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 5), to be allocated into a group. PE2 and PE3 have the
most repeated spikes (𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 3), so they are given into one
group. Here, we regard the PE group as the bucket. Thus, this pro-
cess can be implemented by Bucket-Sort with the time complexity
𝑂 (#Group × #PE), where #Group and #𝑃𝐸 are constant.

This is distinct from the general scheme where the on-chip buffer
for each neuron storing receives spikes within the time window
T = #𝑇𝑆 . Specifically, the maximum on-chip buffer size is𝑂 (T ×M)
for the Eyeriss-based scheme and 𝑂 (T × 𝑛𝑛𝑧) for SpinalFlow.
3.4 Hardware Detail
Bucket-Sort Based Dispatcher (BSD) is the key to balance the
workload among PEs and maximize the data locality. Based on
the workload dispatch strategy discussed in Section III-B, which is
actually composed of the population count (popcount), ADD and the
logical AND instructions available in most modern processors [21],

we propose a BSD design without adding much complexity to the
inference process. As illustrated in Fig. 5, we first load the input by
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Figure 5: The bucket-sort based dispatcher of the SATO architecture.

rows into the input register and conduct the count for each row (i.e.,
counting the ‘1’ at each time steps), which is a simple popcount of
the row (denote as 1 ). Then, we map the workload to PE based on
the number of spikes processed by PE and save results into the PE
register( 2 ). Next, we calculate the number of extra spikes when
inserting PE into the group with logic AND operation and generate
a group PE table stored in the register ( 3 ). As a result, BSD assists
in feeding the data to the PEs.

PE Array consists of PEs capable of integrating spikes at each
time step. The output of each PE is applied to the binary adder-
search tree to generate the spike train. Based on the dataflow we
devised, the PE in the SATO architecture only needs to calculate the
membrane potential increment at each time step. Such a PE design
is simpler and more efficient than previous works [9, 14] illustrated
in Fig. 3(b). The simplifications of PEs in SATO are manifested in
two-fold: 1). Taking advantage of sparsity, it no longer needs to
process a complete row at a time, so PE does not require a large
scratchpad, which occupies half of the core area of the baseline PE,
so this is an important saving; 2). Thanks to the designed temporal-
oriented dataflow, we don’t need the comparator and the memory
to store the membrane potential for resetting.
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Figure 6: The circuit sketch of binary adder-search tree (a); The
binary adder-search tree of the proposed architecture (b).

Binary adder-search tree is responsible for processing the
results from the PE array and generating the spike train. We can



directly take the binary search for determining the time step that
fired the spike for SNN-T. As shown in Fig. 6(b), once the outputs of
PEs are fed to the leaf nodes, we first check whether the integrated
result exceeds the threshold. If yes, we can shorten the required
length of the accumulated time step. Then, we conduct the adder
tree based on the register that assists in activating the leaf node
to participate in the calculation. Next, we compare the final result
with a predefined threshold, which actually generates the binary
string. We find that the neuron fires the spike at 7-th time step and
generates the spike train for SNN-T with three cycles.

4 EXPERIMENT
4.1 Experimental Methodology
Table 1: The characteristic of SNNs for verifying SATO.

Model Structure Coding Timestep DataSet Acc.
SNN-T [4] 784-340-10 Temporal 800 MNIST 97.9%

STiDi-BP [12] 784-500-10 Temporal 600 MNIST 97.4%
SM+SR [15] VGG-7 Temporal 544 CIFAR-10 91.05%
SSTDP [11] VGG-7 Temporal 16 CIFAR-10 91.31%
TSC-SNN [8] VGG-16 Temporal 2480 ImageNet 69.96%

Table 2: The power and area of components for SATO.
Components Param Spec Power Area (𝑚𝑚2)

count 128
bitwidth 8-bitPEs
frequency 200 MHz

23.37 mW 0.0107

Binary Adder-Search Tree
Adder bitwidth 8-bit 7.97 mW 0.0034
Register bitwidth 16-bit 12.20 mW 0.0059

Comparator bitwidth 16-bit 4.39 mW 0.0003
Total 47.73 mW 0.0203

Datasets and Networks. The benchmark networks evaluated in
this work are based on popular image recognition datasets, such as
MNIST, CIFAR-10, and ImageNet. We evaluate SATO with temporal
encoded SNN. Tab. 1 lists the characteristics (structure, time step,
accuracy, etc.) of each benchmark in various SNNs. To valid our
SATO algorithm, we implement it in the Pytorch framework.

Modeling Accelerator Architecture. To evaluate the power
and area of the components in SATO, we used 28 nm technology
node. We model the behavior of the PEs in Verilog and synthesize it
using Synopsys Design Compiler [19]. As for the global buffer, we
use CACTI [13] tomodel it. For a fair comparison, we apply the same
baseline (8-bit) as other SNN solutions, which have the same clock
period (200MHz) and memory bandwidth. Computing Core (Core)
consists of two parts, namely the PE array and the binary adder-
search tree, which perform the function of the neuron model. The
area and power breakdown of components in SATO are summarized
in Tab. 2. The area and power of the Core in SATO are 0.0203𝑚𝑚2

and 47.73𝑚𝑊 , both smaller than SpinalFlow with the same amount.
We set the number of PE groups mentioned in Section 3.3 as 8. To
identify SNN efficiency, we use the Eyeriss architecture with row-
stationary dataflow as an ANN baseline, which engages operates at
the resolution consistent with SNN accelerators. For instance, 4-bit
Eyeriss has the same input resolution as SNNs with 16 time steps.
4.2 Experimental Results
Energy Result: Fig. 7(a) shows the energy comparison of different
SNNs deployed on various accelerators, which are all normalized
to baseline SNN accelerator (i.e., Eyeriss design [3]). Compared to
Eyeriss, S2N2 and SpinalFlow, SATO consumes 91.3% ,83.4% and
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Figure 7: The Normalized energy breakdown (a); performance (b)
of various SNNs.

69.7% less energy, respectively. The energy reduction is mainly
due to the reduced overhead of PEs and the less non-sparse data
transferred between DRAM and global buffers, which is supported
by our temporal-oriented dataflow design using the sparsity of
the spike train. SATO consumes less energy from the global buffer
because SATO benefits from a workload dispatch strategy that
allows good workload balance and exploits data locality, reducing
the overhead of reading data from the global buffer. The reduction
in the Core energy is mainly due to the reduced overhead of the
Core we designed, consisting of the PE and binary adder-search
tree reported in Tab. 2.

Performance Result: Fig. 7(b) shows the total execution cy-
cles of various accelerators in different networks. Compared with
Eyeriss, S2N2, and SpinalFlow, SATO achieves an average 30.9×,
22.1×, and 6.4× performance improvement due to the fact that the
proposed SATO can exploit the sparsity and workload dispatch
strategy. Specifically, the execution time of SpinalFlow is related to
the number of time steps. Thus, for SNNs with too large time steps,
such as TSC-SNN on the ImageNet, the benefits are not as good as
other networks. In contrast, our workload dispatch strategy makes
the number of non-zero spikes executed by our PEs calculations
evenly apportioned. There is no need to maintain the alignment
of the last time step and the maximum number of non-zero spikes
as in SpinalFlow. Simultaneously, compared to SpinalFlow, SATO
optimizes the dataflow to compute the aggregated potential at each
time step in parallel.

Comparison Results: The comparisons among Eyeriss (ANN
baseline), Eyeriss-SNN, S2N2, SpinalFlow and SATO are shown
in Table 3. Eyeriss-SNN closely follows the Eyeriss architecture
without the multiplier unit in PEs [14], adding index generation
logic to exploit sparse spikes. These accelerators all explore the
SNN implementation under the time-driven mechanism. However,
only SATO considers decoupling the chronological dependence.
SATO achieves achieves highest throughput (average 5.8× improve-
ment compared to SpinalFlow with smaller area budget). The high
throughput could be attributed to (i) The proposed mapping method
can balance workloads among PEs, which avoid the performance of
SATO is bounded by the slowest PE. (ii) Our SATO and optimization
strategy can efficiently generate the spike train through the binary
adder-search tree. The smaller area overhead is mainly because the



Table 3: COMPARISONS AMONG FOUR SNN ACCELERATORS and
ONE ANN ACCELERATOR (BASELINE).

Eyeriss [3] Eyeriss-SNN [3, 14] S2N2 [9] SpinalFlow [14] SATO

Technology ASIC (28nm) ASIC (28nm) FPGA (28nm) ASIC (28nm) ASIC (28nm)

Frequency 200 MHz 200 MHz 200 MHz (scaled) 200 MHz 200 MHz

PEs 168 168 - 128 128

ALU
per PE

8-b
MAC

8-b
Add, Cmp

8-b
Add, Cmp

8-b
Add, Cmp

8-b
Add

Area (mm2) 1.068 0.808 - 2.09 1.13

Power (mW) 564.2 294.3 - 162.4 127.8

Throughput
(GOP/s)

126.7
(1×)

56.6
(0.5×)

177.3
(1.4×)

684.5
(5.4×)

3,970.1
(31.3×)

Area Effi.
(GOP/s/mm2)

118.7
(1×)

70
(0.6×) - 327.5

(2.8×)
3,513.3
(29.5×)

budget of the PEs and register in our design is much simpler and
smaller since SATO decouples temporal dependency in the neuron
computation and achieves workload balance among PEs.

Impact of the number of PEs: Fig. 8 shows the change in
energy per inference on TSC-SNN as the PEs increase from 128 to
1024. In the SpinalFlow design, PE is responsible for calculating per
neuron. The number of time steps is generally much greater than
128 [16, 17], so the number of PEs is related to performance gains
and energy consumption. As the number of PEs increases, the size
of the corresponding weight buffer will increase. In SATO, each
PE is responsible for the calculation of multiple time steps. As the
number of PEs increases, we calculate more time steps in parallel
to obtain more performance benefits.
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Figure 8: Speed up and energy per inference for TSC-SNN on SATO
and SpinalFlow, normalized to Eyeriss, varies as the number of PEs.

Impact of time steps: Fig. 9 shows, for the PE array size of 128,
the comparison of SNN network accuracy, performance (higher
is better), and energy consumption (lower is better) varies as the
number of time steps in SSTDP on the CIFAR-10, which are all
normalized to SpinalFlow. As the number of time steps increases,
the accuracy of the SNN increases, and the performance gains of
SATO are also improving. The main reason behind this is that
SATO can parallelize the calculation of each time step through PEs.
Compared with the SNN with 4 time steps, SATO also achieves
2.9× speedup over the SpinalFlow. From Fig. 9(b), we find that
with a larger number of time steps, SATO achieves a better energy
efficiency. For the SNN with 16 time steps, compared to SpinaFlow,
SATO consumes nearly 70% less energy. This is mainly due to the
simplified PEs and workload dispatch strategy. Benefiting from the
workload dispatch strategy, SATO handles fewer non-sparse spikes
than the other schemes, leading to less energy consumed. Note
that even if the time step of SNNs reduces as the algorithm evolves,
SATO still gains notable performance and energy efficiency over
the SpinalFlow. Meanwhile, SATO achieves better performance and
energy efficiency when SNNs scale the number of time steps for
greater accuracy.
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Figure 9: Analysis of the time steps.

5 CONCLUSION
In this work, we propose a temporal-oriented accelerator for spiking
neural networks, namely SATO. It optimizes the calculation of time-
step with well-designed dataflow and makes the system highly
scalable. SATO, combined with the proposed workload allocation
strategy, reduces the PE design overhead by exploiting sparsity and
the traffic among memories using locality. Our evaluation shows
that the proposed SATO scheme outperforms other similar schemes
in performance and energy.
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